Health
Would you like to react to this message? Create an account in a few clicks or log in to continue.
Health

Health care
 
HomeLatest imagesSearchRegisterLog in






 

 listeria monocytogene

Go down 
AuthorMessage
health doctor

health doctor


Posts : 795
Join date : 2011-08-26

listeria monocytogene Empty
PostSubject: listeria monocytogene   listeria monocytogene Icon-new-badgeMon Oct 03, 2011 5:45 am

listeria monocytogene

Listeria monocytogenes, a facultative anaerobe, intracellular bacterium, is the causative agent of listeriosis. It is one of the most virulent foodborne pathogens, with 20 to 30 percent of clinical infections resulting in death.[1] Responsible for approximately 2,500 illnesses and 500 deaths in the United States (U.S.) annually, listeriosis is the leading cause of death among foodborne bacterial pathogens, with fatality rates exceeding even Salmonella and Clostridium botulinum.[2]

L. monocytogenes is a Gram-positive bacterium, in the division Firmicutes, named for Joseph Lister. Motile via flagella at 30°C and below, but usually not at 37°C,[3] L. monocytogenes can instead move within eukaryotic cells by explosive polymerization of actin filaments (known as comet tails or actin rockets).

Studies suggest up to 10% of human gastrointestinal tracts may be colonized by L. monocytogenes.[1]

Nevertheless, clinical diseases due to L. monocytogenes are more frequently recognized by veterinarians, especially as meningoencephalitis in ruminants. See: listeriosis in animals.

Due to its frequent pathogenicity, causing meningitis in newborns (acquired transvaginally), pregnant mothers are often advised not to eat soft cheeses such as Brie, Camembert, feta, and queso blanco fresco, which may be contaminated with and permit growth of L. monocytogenes.[4] It is the third-most-common cause of meningitis in newborns.

More recently, L. monocytogenes has been used as the model organism to illustrate the pathobiotechnology concept.
Contents
[hide]

1 Classification
2 History
3 Pathogenesis
3.1 Regulation of pathogenesis
3.2 Pathogenicity of lineages
4 Treatment
5 Use as a transfection vector
5.1 Cancer vaccine
6 Detection
7 Epidemiology
8 Routes of infection
9 Infectious cycle
10 References
11 External links

[edit] Classification

L. monocytogenes is a Gram-positive, nonspore-forming, motile, facultatively anaerobic, rod-shaped bacterium. It is catalase-positive and oxidase-negative, and expresses a beta hemolysin, which causes destruction of red blood cells. This bacterium exhibits characteristic tumbling motility when viewed with light microscopy.[5] Although L. monocytogenes is actively motile by means of peritrichous flagella at room temperature (20−25°C), the organism does not synthesize flagella at body temperatures (37°C).[6]

The genus Listeria belongs to the Clostridium sub-branch, together with Staphylococcus, Streptococcus, Lactobacillus, and Brochothrix. The genus Listeria includes six different species (L. monocytogenes, L. ivanovii, L. innocua, L. welshimeri, L. seeligeri, and L. grayi). Both L. ivanovii and L. monocytogenes are pathogenic in mice, but only L. monocytogenes is consistently associated with human illness.[7] There are 13 serotypes of L. monocytogenes that can cause disease, but more than 90 percent of human isolates belong to only three serotypes: 1/2a, 1/2b, and 4b. L. monocytogenes serotype 4b strains are responsible for 33 to 50 percent of sporadic human cases worldwide and for all major foodborne outbreaks in Europe and North America since the 1980s.[8][9]
[edit] History

L. monocytogenes was first described by E.G.D. Murray in 1926 based on six cases of sudden death in young rabbits.[10] Murray referred to the organism as Bacterium monocytogenes before J.H. Harvey Pirie changed the genus name to Listeria in 1940.[11] Although clinical descriptions of L. monocytogenes infection in both animals and humans were published in the 1920s, not until 1952 in East Germany was it recognized as a significant cause of neonatal sepsis and meningitis.[12] Listeriosis in adults would later be associated with patients living with compromised immune systems, such as individuals taking immunosuppressant drugs and corticosteroids for malignancies or organ transplants, and those with HIV infection.[13]

Not until 1981, however, was L. monocytogenes identified as a cause of foodborne illness. An outbreak of listeriosis in Halifax, Nova Scotia involving 41 cases and 18 deaths, mostly in pregnant women and neonates, was epidemiologically linked to the consumption of coleslaw containing cabbage that had been treated with L. monocytogenes-contaminated raw sheep manure.[14] Since then, a number of cases of foodborne listeriosis have been reported, and L. monocytogenes is now widely recognized as an important hazard in the food industry.[15]
[edit] Pathogenesis
Main article: Listeriosis

Invasive infection by L. monocytogenes causes the disease listeriosis. When the infection is not invasive, any illness as a consequence of infection is termed febrile gastroenteritis. The manifestations of listeriosis include septicemia,[16] meningitis (or meningoencephalitis),[16] encephalitis,[17] corneal ulcer,[18] pneumonia,[19] and intrauterine or cervical infections in pregnant women, which may result in spontaneous abortion (second to third trimester) or stillbirth. Surviving neonates of fetomaternal listeriosis may suffer granulomatosis infantiseptica - pyogenic granulomas distributed over the whole body, and may suffer from physical retardation. Influenza-like symptoms, including persistent fever, usually precede the onset of the aforementioned disorders. Gastrointestinal symptoms, such as nausea, vomiting, and diarrhea, may precede more serious forms of listeriosis or may be the only symptoms expressed. Gastrointestinal symptoms were epidemiologically associated with use of antacids or cimetidine. The onset time to serious forms of listeriosis is unknown, but may range from a few days to three weeks. The onset time to gastrointestinal symptoms is unknown but probably exceeds 12 hours. An early study suggested that L. monocytogenes is unique among Gram-positive bacteria in that it might possess lipopolysaccharide,[20] which serves as an endotoxin. Later it was found to not be a true endotoxin. Listeria cell walls consistently contain lipoteichoic acids, in which a glycolipid moiety, such as a galactosyl-glucosyl-diglyceride, is covalently linked to the terminal phosphomonoester of the teichoic acid. This lipid region anchors the polymer chain to the cytoplasmic membrane. These lipoteichoic acids resemble the lipopolysaccharides of Gram-negative bacteria in both structure and function, being the only amphipathic polymers at the cell surface.[21][22]

The infective dose of L. monocytogenes varies with the strain and with the susceptibility of the victim. From cases contracted through raw or supposedly pasteurized milk, one may safely assume that, in susceptible persons, fewer than 1,000 total organisms may cause disease. L. monocytogenes may invade the gastrointestinal epithelium. Once the bacterium enters the host's monocytes, macrophages, or polymorphonuclear leukocytes, it becomes blood-borne (septicemic) and can grow. Its presence intracellularly in phagocytic cells also permits access to the brain and probably transplacental migration to the fetus in pregnant women. The pathogenesis of L. monocytogenes centers on its ability to survive and multiply in phagocytic host cells.
[edit] Regulation of pathogenesis

L. monocytogenes can act as a saprophyte or a pathogen, depending on its environment. When this bacterium is present within a host organism, quorum sensing causes the up regulation of several virulence genes. Depending on the location of the bacterium within the host organism, different activators up regulate the virulence genes. SigB, an alternative sigma factor, up regulates Vir genes in the intestines, whereas PrfA up regulates gene expression when the bacterium is present in blood.[23][24][25][26] Little is known about how this bacterium switches between acting as a saprophyte and a pathogen; however, several noncoding RNAs are thought to be required to induce this change.
[edit] Pathogenicity of lineages

L. monocytogenes has three distinct lineages, with differing evolutionary histories and pathogenic potentials.[27] Lineage I strains contain the majority of human clinical isolates and all human epidemic clones, but are underrepresented in animal clinical isolates.[27] Lineage II strains are overrepresented in animal cases and underrepresented in human clinical cases, and are more prevalent in environmental and food samples.[28] Lineage III isolates are very rare, but significantly more common in animal than human isolates.[27]
[edit] Treatment

When listeric meningitis occurs, the overall mortality may reach 70%, from septicemia 50%, and from perinatal/neonatal infections greater than 80%. In infections during pregnancy, the mother usually survives. Reports of successful treatment with parenteral penicillin or ampicillin exist. Trimethoprim-sulfamethoxazole has been shown effective in patients allergic to penicillin.

Bacteriophage treatments have been developed by several companies. EBI Food Safety and Intralytix both have products suitable for treatment of the bacterium. The U.S. Food and Drug Administration (FDA) approved a cocktail of six bacteriophages from Intralytix, and a one type phage product from EBI Food Safety designed to kill L. monocytogenes. Uses would potentially include spraying it on fruits and ready-to-eat meat such as sliced ham and turkey.
[edit] Use as a transfection vector

Because L. monocytogenes is an intracellular parasite, some studies have used this bacterium as a vector to deliver genes in vitro. Current transfection efficiency remains poor. One example of the successful use of L. monocytogenes in in vitro transfer technologies is in the delivery of gene therapies for cystic fibrosis cases.[29]
[edit] Cancer vaccine

A live attenuated L. monocytogenes cancer vaccine, ADXS11-001, is under development as a possible treatment for cervical carcinoma.[30]
[edit] Detection
Colonies of typical Listeria monocytogenes as they appear when grown on Listeria-selective agar

The methods for analysis of food are complex and time-consuming. The present U.S. FDA method, revised in September, 1990, requires 24 and 48 hours of enrichment, followed by a variety of other tests. Total time to identification takes from five to seven days, but the announcement of specific nonradiolabled DNA probes should soon allow a simpler and faster confirmation of suspect isolates.

Recombinant DNA technology may even permit two- to three-day positive analysis in the future. Currently, the FDA is collaborating in adapting its methodology to quantitate very low numbers of the organisms in foods.
[edit] Epidemiology

Researchers have found L. monocytogenes in at least 37 mammalian species, both domesticated and feral, as well as in at least 17 species of birds and possibly in some species of fish and shellfish. Laboratories can isolate L. monocytogenes from soil, silage, and other environmental sources. L. monocytogenes is quite hardy and resists the deleterious effects of freezing, drying, and heat remarkably well for a bacterium that does not form spores. Most L. monocytogenes are pathogenic to some degree.
[edit] Routes of infection

L. monocytogenes has been associated with such foods as raw milk, pasteurized fluid milk,[31] cheeses (particularly soft-ripened varieties), ice cream, raw vegetables, fermented raw-meat sausages, raw and cooked poultry, raw meats (of all types), and raw and smoked fish. Its ability to grow at temperatures as low as 0°C permits multiplication in refrigerated foods. At refrigeration temperature, such as 4°C, the amount of ferric iron can affect the growth of L. monocytogenes.[32]
[edit] Infectious cycle

The primary site of infection is the intestinal epithelium, where the bacteria invade nonphagocytic cells via the "zipper" mechanism. Uptake is stimulated by the binding of listerial internalins (Inl) to host cell adhesion factors, such as E-cadherin or Met. This binding activates certain Rho-GTPases, which subsequently bind and stabilize Wiskott Aldrich syndrome protein (WAsp). WAsp can then bind the Arp2/3 complex and serve as an actin nucleation point. Subsequent actin polymerization extends the cell membrane around the bacterium, eventually engulfing it. The net effect of internalin binding is to exploit the junction-forming apparatus of the host into internalizing the bacterium. L. monocytogenes can also invade phagocytic cells (e.g., macrophages), but requires only internalins for invasion of nonphagocytic cells.

Following internalization, the bacterium must escape from the vacuole/phagosome before fusion with a lysosome can occur. Three main virulence factors that allow the bacterium to escape are listeriolysin O (LLO - encoded by hly) phospholipase A (encoded by plcA) and phospholipase B (plcB).[33][34] Secretion of LLO and PlcB disrupts the vacuolar membrane and allows the bacterium to escape into the cytoplasm, where it may proliferate.

Once in the cytoplasm, L. monocytogenes exploits host actin for the second time. ActA proteins associated with the old bacterial cell pole (being a bacillus, L. monocytogenes septates in the middle of the cell and thus has one new pole and one old pole) are capable of binding the Arp2/3 complex, thereby inducing actin nucleation at a specific area of the bacterial cell surface. Actin polymerization then propels the bacterium unidirectionally into the host cell membrane. The protrusion that is formed may then be internalized by a neighboring cell, forming a double-membrane vacuole from which the bacterium must escape using LLO and PlcB. This mode of direct cell-to-cell spread involves a cellular mechanism known as paracytophagy.[35]
[edit] References

^ a b Ramaswamy V, Cresence VM, Rejitha JS, Lekshmi MU, Dharsana KS, Prasad SP, Vijila HM. (02 2007). "Listeria – review of epidemiology and pathogenesis." (PDF). J Microbiol Immunol Infect. 40 (1): 4–13. PMID 17332901. Retrieved 2010-09-05.
^ Dharmarha, Vaishali (December 2008). The majority of deaths from Listeria food poisoning are in individuals with compromised immune systems: pregnant women, newborns, the elderly, and the immunosupressed. "A Focus on Listeria Monocytogenes". National Agricultural Library, Food Safety Research Information Office. Retrieved January 28, 2009.
^ Gründling A., Burrack L.S., Bouwer H.G.A., Higgins D.E. (2004). "Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence". Proc. Natl. Acad. Sci. USA 101: 12316–12323.
^ Genigeorgis C., Carniciu M., Dutulescu D., Farver T.B. (1991). "Growth and survival of Listeria monocytogenes in market cheeses stored at 4 to 30 degrees C". J. Food Prot. 54 (9): 662–668.
^ Farber, J. M.; Peterkin, P. I. (September 1991). "Listeria monocytogenes, a food-borne pathogen". Microbiology and Molecular Biology Reviews 55 (3): 476–511. PMC 372831. PMID 1943998.
^ Todar, K. (2008). "Listeria monocytogenes". Todar's Online Textbook of Bacteriology. Retrieved January 28, 2009.
^ Seafood HACCP Alliance (2007). "Compendium of Fish and Fishery Product Processes, Hazards, and Controls, Chapter 15: Listeria monocytogenes". Seafood Network Information Center. Retrieved January 28, 2009.
^ Dharmarha, Vaishali (December 2008). "A Focus on Listeria Monocytogenes". National Agricultural Library, Food Safety Research Information Office. Retrieved January 28, 2009.
^ Ward, T. J.; Gorski, L.; Borucki, M. K.; Mandrell, R. E.; Hutchins, J.; Pupedis, K. (2004). "Intraspecific Phylogeny and Lineage Group Identification Based on the prfA Virulence Gene Cluster of Listeria monocytogenes ". Journal of Bacteriology 186 (15): 4994–5002. doi:10.1128/JB.186.15.4994-5002.2004. PMC 451661. PMID 15262937.
^ Murray, E.G.D., Webb, R.E., Swann, M.B.R. 1926. A disease of rabbits characterized by a large mononuclear leucocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes (n. sp.). J. Pathol. Bacteriol. 29: 407– 439.
^ Harvey P.J.H. (1940). "Listeria: change of name for a genus of bacteria". Nature 145 (3668): 264. Bibcode 1940Natur.145..264P. doi:10.1038/145264a0.
^ Potel, J. 1952. Zur Granulomatosis infantiseptica. Zentr. Bakteriol. I. Orig. 158: 329-331
^ Schlech W.F. III; Acheson, D. (2001). "Foodborne listeriosis". Clin. Infect. Dis. 31 (3): 770–775. doi:10.1086/314008. PMID 11017828.
^ Schlech, W.F., Lavigne, P.M., Bortolussi, R.A., Allen, A.C., Haldane, E.V., Wort, A.J., Hightower, A.W., Johnson, S.E., King, S.H., Nicholls, E.S. and Broome, C.V. 1983. Epidemic listeriosis—evidence for transmission by food. New Engl. J. Med. 308:203–206.
^ Ryser, E.T., Marth, E.H. (Eds.) 1999. Listeria, Listeriosis, and Food. Safety, 2nd edn. Marcel Dekker, New York.
^ a b Gray, M. L., and A. H. Killinger. 1966. Listeria monocytogenes and listeric infection. Bacteriol. Rev. 30:309-382.
^ Armstrong R. W., Fung P. C. (1993). "Brainstem encephalitis (Rhombencephalitis) due to Listeria monocytogenes: case report and review". Clin. Infect. Dis. 16 (5): 689–702. doi:10.1093/clind/16.5.689. PMID 8507761.
^ Holland S., Alfonso E., Heidegger D., Mendelsohn A., Ullman S., Miller D. (1987). "Corneal ulcer due to Listeria monocytogenes". Cornea 6 (2): 144–146. doi:10.1097/00003226-198706020-00008. PMID 3608514.
^ Whitelock-Jones L., Carswell J., Rassmussen K. C. (1989). "Listeria pneumonia. A case report". South African Medical Journal 75 (4): 188–189. PMID 2919343.
^ Wexler H., Oppenheim J. D. (1979). "Isolation, characterization, and biological properties of an endotoxin-like material from the gram-positive organism Listeria monocytogenes". Infect. Immun 23 (3): 845–857. PMC 414241. PMID 110684.
^ Fiedler, F (1988). "Biochemistry of the cell surface of Listeria strains: a locating general view". Infection 16 Suppl 2: S92–7. PMID 3417357.
^ Farber, JM; Peterkin, PI (1991). "Listeria monocytogenes, a food-borne pathogen". Microbiological reviews 55 (3): 476–511. PMC 372831. PMID 1943998.
^ Mengaud, J.; Dramsi, S.; Gouin, E.; Vazquez-Boland, J. A.; Milon, G.; Cossart, P. (1991). "Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated". Molecular Microbiology 5 (9): 2273–83. doi:10.1111/j.1365-2958.1991.tb02158.x. PMID 1662763.
^ Leimeister-Wachter, M.; Haffner, C; Domann, E; Goebel, W; Chakraborty, T (1990). "Identification of a Gene that Positively Regulates Expression of Listeriolysin, the Major Virulence Factor of Listeria monocytogenes". Proceedings of the National Academy of Sciences 87 (21): 8336–40. doi:10.1073/pnas.87.21.8336. PMC 54950. PMID 2122460.
^ Garner, M. R.; Njaa, B. L.; Wiedmann, M.; Boor, K. J. (2006). "Sigma B Contributes to Listeria monocytogenes Gastrointestinal Infection but Not to Systemic Spread in the Guinea Pig Infection Model". Infection and Immunity 74 (2): 876–86. doi:10.1128/IAI.74.2.876-886.2006. PMC 1360341. PMID 16428730.
^ Mandin, Pierre; Fsihi, Hafida; Dussurget, Olivier; Vergassola, Massimo; Milohanic, Eliane; Toledo-Arana, Alejandro; Lasa, Iñigo; Johansson, JöRgen et al. (2005). "VirR, a response regulator critical for Listeria monocytogenes virulence". Molecular Microbiology 57 (5): 1367–80. doi:10.1111/j.1365-2958.2005.04776.x. PMID 16102006.
^ a b c Jeffers G. T., Bruce J. L., McDonough P. L., Scarlett J., Boor K. J., Wiedmann M. (2001). "Comparative genetic characterization of Listeria monocytogenes isolates from human and animal listeriosis cases". Microbiology 147 (Pt 5): 1095–1104. PMID 11320113.
^ Gray M. J., Zadoks R. N., Fortes E. D., Dogan B., Cai S., Chen Y., Scott V. N. et al. (2004). "Listeria monocytogenes isolates from foods and humans form distinct but overlapping populations". Applied and Environmental Microbiology 70 (10): 5833–5841. doi:10.1128/AEM.70.10.5833-5841.2004. PMC 522108. PMID 15466521. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=522108.
^ Krusch, S; Domann, E; Frings, M; Zelmer, A; Diener, M; Chakraborty, T; Weiss, S (2002). "Listeria monocytogenes mediated CFTR transgene transfer to mammalian cells". The journal of gene medicine 4 (6): 655–67. doi:10.1002/jgm.313. PMID 12439857.
^ Fran Lowry (2008-05-15). "Live Listeria Vaccine Proves Safe Against End-Stage Cervical Ca in Human Trial". Ob.Gyn. News Vol.43, No.10, page 2.
^ Fleming D. W., Cochi S. L., MacDonald K. L., Brondum J., Hayes P. S., Plikaytis B. D., Holmes M. B., Audurier A., Broome C. V. et al. (1985). "Pasteurized milk as a vehicle of infection in an outbreak of listeriosis". N. Engl. J. Med. 312 (7): 404–407. doi:10.1056/NEJM198502143120704. PMID 3918263.
^ Dykes, G. A., Dworaczek (Kubo), M. 2002. Influence of interactions between temperature, ferric ammonium citrate and glycine betaine on the growth of Listeria monocytogenes in a defined medium. Lett Appl Microbiol. 35(6):538-42.
^ Schmid M. W., Ng E. Y. W., Lampidis R., Emmerth M., Walcher M., Kreft J., Goebel W. et al. (2005). "Evolutionary history of the genus Listeria and its virulence genes". Systematic and Applied Microbiology 28 (1): 1–18. doi:10.1016/j.syapm.2004.09.005. PMID 15709360.
^ Zhang C., Zhang M., Ju J., Nietfeldt J., Wise J., Terry P. M., Olson M. et al. (2003). "Genome diversification in phylogenetic lineages I and II of Listeria monocytogenes: identification of segments unique to lineage II populations". The Journal of Bacteriology 185 (18): 5573–5584. doi:10.1128/JB.185.18.5573-5584.2003. PMC 193770. PMID 12949110.
^ Robbins JR, Barth AI, Marquis H, de Hostos EL, Nelson WJ, Theriot JA (1999). "Listeria monocytogenes exploits normal host cell processes to spread from cell to cell". J Cell Biol 146 (6): 1333–50. doi:10.1083/jcb.146.6.1333. PMC 1785326. PMID 10491395.

Back to top Go down
 
listeria monocytogene
Back to top 
Page 1 of 1
 Similar topics
-
» listeria causes
» listeria cheese
» listeria bacteria
» listeria symptoms in dogs
» listeria symptoms in pregnancy

Permissions in this forum:You cannot reply to topics in this forum
Health :: health :: Cancer-
Jump to: